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Abstract-A finite element technique based on moving unstructured grids is developed to simulate the 
motion of a large number of solid particles in a flowing liquid. A generalized Galerkin finite element 
formulation which incorporates both the fluid and particle equations of motion into a single variational 
equation is developed for Newtonian fluids. The hydrodynamic forces and moments acting on the solid 
particles are eliminated in the formulation, so need not be computed explicitly. An arbitrary Lagran- 
gian-Eulerian (ALE) technique is adopted to deal with the motion of the particles. In the implementation, 
the nodes on the particle surface are assumed to move with the particle. The nodes in the interior of the 
fluid are computed using Laplace’s equation, to guarantee a smoothly varying distribution of the nodes. 
At each time step, the grid is updated according to the motion of the particles and checked for element 
degeneration. If unacceptable element distortion is detected, a new finite element grid is generated and 
the flow fields are projected from the old grid to the new grid. This generalized ALE Galerkin finite element 
approach gives rise to a set of non-linear algebraic equations which is solved via a quasi-Newton scheme. 
The corresponding linearized system is solved with an iterative solver using a preconditioned generalized 
minimal residual algorithm. Initially, the particles are positioned randomly in the fluid, with zero velocity. 
The particles are then released and the motion of the combined fluid-particle system is simulated using 
a procedure in which the positions of the particles and of the mesh grids are updated explicitly, while the 
velocities of the fluid and the solid particles are determined implicitly. 

Using the developed numerical procedure, we study the Poiseuille flow of solid-liquid mixtures in a 
vertical channel. The computation is performed within a unit cell which is periodic in the direction along 
the channel. The gravity is directed along the channel walls, and a pressure gradient is applied against 
the gravity and drives the flow. The solid particles are slightly heavier than the liquid. The effects of the 
applied pressure gradient, the particle Reynolds number and the fraction of the solid loading on the flow 
pattern of the solid-liquid mixture are studied. It was found that when the applied pressure gradient is 
large enough to overcome the gravity, the particles migrate away from the channel walls and there is a 
clear liquid layer next to the wall which lubricates the flow. As the particle Reynolds number is increased, 
particles interact more strongly and large clusters of particles are formed in the flow. 

1. INTRODUCTION 

Solid-liquid two-phase flows are usually studied using a continuum approach that views solids and 
liquids as inter-penetrating mixtures, each being governed by conservation laws, either postulated 
or derived by averaging [see Ishii (1975), Drew (1983), Joseph & Lundgren (1990) and Zhang & 
Prosperetti (1994), for example]. This approach results in unknown terms representing interactions 
between the liquid and solid phases. These terms must be modeled to close the equations (Anderson 
& Jackson 1967). The nature of the detailed interactions between solids and liquids cannot be 
understood from the application of the mixture theories. 

The clusters and anisotropic microstructures observed in solid-liquid flows are the result of solid 
particle migrations produced by particle-particle and particle-wall interactions. These local 
rearrangement mechanisms are mediated by things like hydrodynamic forces and moments acting 
on the particles, wake interactions and vortex shedding. Direct numerical simulation of the exact 
particle motion in liquid may be the only theoretical tool capable of studying these non-linear and 
geometrically complicated phenomena. 

It is possible to simplify the flow description considerably by ignoring viscous effects completely 
(inviscid potential flow) or by ignoring inertia completely (Stokes flow). Potential flow simulations 
[see, Sangani & Didwania (1993), Sangani & Prosperetti (1993) and Smereka (1993)] do lead to 
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cross-stream alignment of particles in fluidized systems, but the wakes and the other non-linear 
mechanisms for the fundamental arrangement of particles in a fluidized suspension are absent. 
Brady and coworkers [see, for example, Brady & Bossis (1988) and Brady (1993)] have developed 
numerical techniques for simulating the motion of a large number of particles in Stokes flow. These 
simulations are appropriate for colloids in the limit of very small Reynolds numbers and appear 
to successfully capture the hydrodynamic interactions of the particles. However, the non-linear 
inertia mechanisms which control the migration and the rotation of particles do not exist in Stokes 
flow. 

For simulations of solid-liquid flows at finite Reynolds numbers, Hu et al. (1992) developd a 
numerical scheme using a finite element technique and simulated two-dimensional motions of a few 
(up to four) sedimenting circular and elliptic cylinders confined in a channel. Using the same 
scheme, Feng et al. (1994a, b) studied the motion and interaction of circular and elliptical particles 
in sedimenting, Couette and Poiseuille flows of a Newtonian fluid. Huang et al. (1994) examined 
the turning couples on an elliptic particles settling in a channel. Hu (1996) studied the rotation of 
a circular cylinder setting close to a solid wall. Feng et al. (1995) analysed the mechanisms for the 
lifting of flying capsules in pipelines. A summary of these numerical works was presented by Joseph 
(1994). 

Based on a space-time finite element method advocated by Hughes [see Hughes et al. (1987) and 
Huges & Hulbert (1988)], Tezduyar et al. (1992a, b) developed a DSD/ST (deforming-spatial- 
domain/space-time) procedure for finite element computations involving moving boundaries and 
interfaces. In their method, the finite element solution and test functions extend over both the 
spatial and temporal coordinates. The basis functions are continuous in space but discontinuous 
in time with a jump term in the variational formulation enforcing the weak continuity of solution 
across space-time slabs. They tested their method for flows with drafting cylinders. Using the same 
stabilized space-time finite element method, Johnson & Tezduyar (1995) recently simulated 
sedimentation of up to five solid spheres in a tube at a Reynolds number of 100. They developed 
an automatic mesh updating technique based on solving an equation governing the motion of the 
mesh nodes and on remeshing to accommodate the change in the shape of the domain. 

In the references mentioned above, only a few particles are involved. Unverdi & Tryggvason 
(1992) introduced a front tracking/finite difference method for computing the unsteady motion of 
drops and bubbles. In their work, the flow field is solved on a fixed uniform grid using the finite 
difference scheme. The drop surface is tracked by a set of points (front) that are moved by 
interpolating their velocity from the fixed grid. In the discretization, the sharp drop surface is 
replaced by a smoother grid interface. However, the front points are reconstructed to keep the 
density and viscosity stratification sharp and to calculate surface tension forces at each time step. 
Esmaeeli & Tryggvason (1995) have computed the rise of 16 bubbles in three dimensions, and 144 
and 324 two-dimensional bubbles in a doubly periodic domain at a Reynolds number near 2. These 
simulations have not been adapted to flows with solid particles. 

A new unconventional computational approach to the solid-liquid flow is based on the 
lattice-gas [see, for example, Laddet al. (1988)] and lattice Boltzmann methods (Ladd, 1994). These 
models can handle a huge number of particles. However, the conditions used in these methods are 
not directly comparable to the experimental ones, and the results produced by these methods are 
not sufficiently reliable to be used in engineering practices. 

In this paper, we will present a finite element technique based on moving unstructured grids to 
simulate motion of a large number of solid particles in a flow liquid. 

2. G O V E R N I N G  E Q U A T I O N S  

Consider an incompressible fluid occupying a bounded region f~, with boundary F, at a given 
time instant t. There are N rigid solid objects (particles) freely moving in the fluid. We are interested 
in determining the motion of both fluid and individual solid particles. The Reynolds number of 
the flow based on particle size is not small, thus the inertia of the fluid and solid cannot be neglected. 
The fluid motion has to satisfy the conservation of mass 

V . u = O  [1] 
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and the conservation of  momentum 

Of "~  -6 (tl" V)U = pff-6 V" a [2] 

where u is the velocity vector, pf is the density of  the fluid, f is the body force and a is the stress 
tensor. For a Newtonian fluid the stress tensor is given by the simple constitutive relation 

a = - p  1 +/zf[Vu -6 (Vu) T] [3] 

where p is the pressure and #f is the viscosity of  the fluid. 
The motion of  solid objects satisfies Newton's law 

and 

M dUp - ~  = Fp -6 Gp [4a]  

dX 
dt = Up, for p = 1, 2 . . . .  , N [4b] 

wherc M is the gcnrcalizcd mass matrix. X and U are, respectively, the generalized position and 
velocity vectors which incorporate both translational and angular components. The gcncralizcd 
force vector is expressed in two terms: F is the force imposcd on the particle by the fluid and G 
is the body force excrtcd by external ficlds such as gravity. The matrix and vectors arc written 
explicitly as 

"m 0 0 0 

0 m 0 0 

0 0 m 0 

o o o ix~ 

o o o ~ .  
o o o i~. 

M =  

0 0 

0 0 

0 0 

Ixy l = '  
I .  I .  
I~y I~z. 

- x 7 - v.7 -Fx I 

I r !  !v.,i 
z l  v f  F~I  
O x  ' 

o~ T~ 
_s:_ La,J _r. 

where m is the mass of  the object, and Is are the moments of  inertia and products of  inertia of  
the object. For two-dimensional motions, the mass matrix reduces to diagonal M = diag(m, m, I=). 

The forces and moments imposed on an object by the fluid are given by 

[Fx, Fy, F~] = f a .  fi dF [6a] 

and 

[Tx, Ty, T~] = f ( x  -- Xp) x (a" fi) d r  [6b] 

where the integration is performed over the surface of  the object, tt is the unit normal vector on 
the surface of  the object pointing outward and X,p = [X, Y, Z] T is the position of  the centroid of  
the object. 

The boundary of  the domain occupied by the fluid, F,, can be decomposed into three 
non-overlapping section: (F,),,  (F,)~ and U (F,)p, where (F,)p is the surface of  solid particle p. On 
these boundary sections the following types of  boundary conditions are imposed 

and 

u = g ,  on (r,) .  [71 

# • n = h, o n  ( F , L  [8] 

u = V p + f l p x ( x - ' X p ) ,  on (F,)p, p = l , 2  . . . . .  N [9] 
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where g and h are prescribed values of velocity and traction, n is the unit normal vector on the 
boundary and Vp and f~p are, respectively, the transitional and angular velocities of object p 
(Up = [Vp, f~p]+). Equation [9] represents the no-slip condition on the surface of the object. 

3. G A L E R K I N  F I N I T E  E L E M E N T  F O R M U L A T I O N  

We seek a generalized Galerkin finite element formulation that incorporates both the fluid and 
particle equations of motion [2] and [4]. In the formulation, the spatial coordinates are discretized 
using finite element scheme, and the temporal coordinate is treated with a finite difference method. 

At time instant t, the fluid occupies the domain f~, with boundary F,. We define the finite element 
interpolation functional space for the velocity and the pressure in the fluid phase as 

S _ { u  ~ h _  = (  x, Uy, ~ u  h h Uh)luh~n~h(~,),U h=ghon (F , )u ,  

and [10a] 

u h = Vp + f~p × (x - Xp) o n  (Ft)p, V p  = 1 . . . . .  N}, 

w h h wh)lwh~HIh(D,), w h = 0 on (r , ) . .  V ~  = { w  h = ( x ,  w ~ ,  

and [10b] 

and 

w h = 6Vp + 6f~p × (x - X.) on (F,)p. Vp = 1 . . . . .  N} 

S p h  h - -  Vp - {pn]ph~ Hth(t~,)} [10c] 

where Vp and f~p (Up = [Vp, f2,] v) are the translational and angular velocities of the solid particles, 
and 6 Vp and 6 ~p (6 Up = [6 Vp, 6 f~p]V) are their variations (arbitrary functions of time). In the finite 
element domain, these spaces are formed using second-order polynomials for the velocity and 
first-order polynomials for the pressure (P2/P~ elements). 

The Galerkin finite element formulation can be expressed as: 
Find u h c S~ and ph E S~, such that Vw h E V~ and qh ~ V h, 

"prk-~f + ( u  ~ .  V ) u  ~ - _ w ~ . 
, / d ~t r , ) .  

f¢ fn " ( M  d U ' - F _ F x - G , ) = O .  [11] -p~ r~)ew h'(a h ' n ) F +  ,q hV" uhdf~+~" bUr \ dt 

Using the relation between w h and 6U e on the surface of solid particles (built in V~) and [6] for 
the forces and moments acting on the particles, it can be easily shown that the integral over the 
particle surfaces cancels the generalized force term F, (the two underlined terms). Therefore, in this 
generalized Galerkin formulation one does not need to compute explicitly the hydrodynamic forces 
and moments acting on the solid particles. A similar variational formulation was also developed 
by Hesla et al. (1995). An equivalent discretized form of[11] was used by Nomura & Hughes (1992) 
for study of fluid-structure interaction problems, 

As we are expecting a large number of solid particles moving freely in the fluid, the domain 
occupied by fluid changes greatly. A moving finite element mesh has to be used. To handle the 
movement of the finite element mesh, an arbitrary Lagrangian-Eulerian (ALE) technique [see 
Huerta & Liu (1988) and Nomura & Hughes (1992)] is used. In this ALE Galerkin finite element 
formulation, [11] reduces to 

fo ,j fo f, w h. pfL- ~ -  + (u.  - u ~ ) .  v u  ~ - df~ + Vwh:a h d[~ - w h" dC 
t r Ft)~ 

+ f n q h V ' u h d K 2 + ~ 6 U p ' [ M d U p - G , l = O - - ~  [12] 
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where 6u*/rt is the time derivative following the same referential mesh node and u~ is the velocity 
vector which defines the motion of mesh nodes. In general, the mesh velocity can be specified 
arbitrarily as long as it follows the motion of the particles. In our implementation, we assume that 
the nodes on the particles surface move with the particle (no slip), and the nodes in the interior 
of the fluid are computed using Laplace's equation, to guarantee a smoothly varying distribution 
of the nodes: 

V2um = 0 

with boundary conditions given by 

= .  = v , + n ,  × 

and 

in f2,, [13] 

on (r,).,p = 1,2 . . . . .  N 

u rn=0  on ( r , ) . u ( r , ) . .  [14] 

Equation [13] is also solved with a Galerkin finite element formulation whose functional space is 
formed using first-order (linear) polynomials, to reduce computational cost. The values of the mesh 
velocity on the remaining mesh nodes are interpolated locally inside each finite element. 

The ALE finite element formulation [12] is related to the space--time finite element method with 
the basis functions continuous in space but discontinuous in time, as discussed in Hansbo (1992) 
and Behr & Tezduyar (1994). ALE formulation amounts to using elements that are superparametric 
in time. With a constant (P0) temporal approximation of the solution, the geometry will be 
expressed by a linear (PI) or quadratic (P2) deforming element in space-time. 

For a given finite element mesh, [12] can be discretized and be reduced to a non-linear system 
of algebraic equations 

0 0 p = ; [15] 

E G U 

and [13] can be discretized to a linear system of algebraic equations 

Hum = c [161 

where A, B, C, D, E, G and H are sparse matrices. In general, A is non-symmetric and linear in 
u and tim; G and H are symmetric and positive definite. In [15] and [16], u, p and um represent, 
respectively, the vectors collecting all the velocity, pressure and mesh velocity unknowns at grid 
points in the fluid; and U is the vector combining all the translational and angular velocities of 
the solid particles. The vectors on the right hand side of the equations, a, b and e result from the 
force terms in the fluid and solid momentum equations and from the application of the boundary 
conditions. For two-dimensional flow problems, the length of the vector u is twice the number of 
nodes in the mesh; the length of p or Um is the number of vertices in the mesh; and the length of 
the vector U is three times the number of rigid particles. 

The algebraic systems [15] and [16] are coupled, and are solved iteratively at each time step. It 
is noted that the equations for the components of the mesh velocity are decoupled, and the matrix 
H in the algebraic systems [16] remains in the same form for a given finite element mesh. Thus, 
the matrix H is stored and repeatedly used during the iterations. It is also found that a modified 
version of [13], in which the Jacobian of the transformation between the physical and element 
domain is dropped, converges faster and also gives rise to better properties for the mesh velocity, 
when an iterative solver, such as GMRES, is used. In this modified version, smaller elements retain 
their shapes better, as noted by Johnson & Tezduyar (1994). 

4. MESH GENERATION 

Although the formulation of the problem described above is valid for general three-dimensional 
solid-liquid flows, we will concentrate on two-dimensional motions in the present study. We are 
anticipating rather complicated interactions of a large number of solid particles. The geometry of 
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the computation domain occupied by the fluid can change drastically from time to time. At each 
time step, the finite element mesh is updated according to the mesh velocity obtained at the previous 
time, and checked for element degeneration. If  unacceptable element distortion is detected, a new 
finite element grid is generated which may not have any correspondence with the old grid, and then 
the flow field has to be projected from the old grid to the newly generated grid. 

In computing solid-liquid flows with a large number of solid particles, it is often necessary to 
use periodic boundary conditions in one or more directions. At the periodic boundaries solid 
particles frequently leave and enter the computation domain. In this work we developed a finite 
element mesh generator that automatically takes care of the periodic boundaries without 
introducing artificial cuts on these boundaries. The artificial cuts on the periodic boundaries may 
give rise to very unsatisfactory elements. This mesh generator uses positions of the solid particles 
as input. The periodic boundaries are handled by developing proper mapping functions. In the case 
of two-dimensional flow within a unit cell which is periodic in one direction and bounded by solid 
walls in the other, the mapping is formed by first connecting two periodic boundaries resulting in 
a cylindrical surface, then expanding one end of the cylindrical surface to form a trapezoidal cone, 
and finally projecting the surface of the cone onto a two-dimensional concentric region. A 
preliminary mesh is generated inside this concentric region using the Delaunay-Voronoi methods 
[see for example, Hecht & Saltel (1990) and George (1991)]. This preliminary mesh is mapped back 
to the original periodic domain. The final mesh is obtained by performing a Delaunay triangulation 
and smoothing of the mapped mesh. 

When a large number of solid particles interact, they may collide under certain conditions. In 
our current work, we assume that particles never collide and there is always a thin liquid film 
between the approaching particles. The mesh generator has a local refinement capability in the 
region (gaps) formed by approaching solid particles or between particles and bounding walls. There 
is always at least one layer of elements in those regions, and the mesh size in there is designed to 
be the minimum gap size between the approaching particles. The local refinement in the gaps 
between particles is essential to the correct modeling of the "particle collision" process. 

An example of the mesh used in this study is presented in figure 1. There are 100 circular cylinders 
in a periodic domain between two channel walls. In the figure, straight line is used to connect three 
vertices of a triangle. However, the curved isoparametric P2 triangles (with six nodes) are used in 
the simulation to fit the curved boundaries on the particle surface. 

An additional cost incurred in using the unstructured finite element grid is the need to 
project flow field from one grid to another. In our projection scheme, for each node in the new 
mesh, a search is initiated in the old mesh to locate the element where the node lies. The search 
is essentially one-dimensional by using the information of neighboring elements. Once the element 
is identified, local coordinates for the node are calculated and various functions are easily 
interpolated. 

5. SOLUTION PROCEDURE 

Initially, the particles are positioned randomly in the fluid, with zero velocity. The fluid is either 
at rest or flowing steadily around the particles. The particles are then released, and the motion of 
the combined fluid-particle system is simulated. Hu et al, (1992) developed a solution procedure 
in which the positions of the particles and the grid nodes in the fluid domain are updated explicitly, 
while the particle velocities and the fluid flow field (velocity and pressure) are determined implicitly 
to avoid numerical instabilities. A modified version of that procedure which incorporates the ALE 
scheme with mesh velocities determined implicitly by solving a set of Laplace equations is 
implemented in this study. The details of the modified solution procedure are listed below. 

(1) Initialization 

to = 0, n = 0 (index for time step). 
Generate an initial mesh x0. 
Initialize u(x0, 0), p(x0, 0) and Xp(0), Up(0) for p = 1, 2 . . . . .  N. 
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(2) Explicit update 

Select t ime step Atn + l : tn + i = t~ + At~ + i. 
U p d a t e  part icle  pos i t ion  Xp (t~ + 1 ) = Xp (t~) + At~ + ~ Up (tn), for  p = l, 2 . . . . .  N. 
U p d a t e  mesh  nodes  ~(t~ + l ) = x(tn) + Atn + i u,, (t~). 

(3) Remeshing and projection [if the mesh $(G+ 1) is too distorted] 
Genera t e  a new mesh  x(G+~ ). 
Pro jec t  the flow field f r o m  ~(t,  + 1) o n t o  x(t~+ 5). 

(4) Flow solver 

I tera t ively  solve u(x(t ,  + l ), tn + ~ ), p (x(tn + l ), tn + i ), Um (X(t, + ~ ), t, + l ) 
a n d  Up( t ,+ j )  for  p = 1 , 2 , . . . ,  N f r o m  [15] a n d  [16]. 

(5) I f  the t ime tn+ 1 is less than  a specified t ime go to step (2); o therwise  stop.  

(a) 

(b) 

Figure I. An example of  the finite element mesh used in the simulation. (a) Overall view of a mesh with 
I00 circular cylinders. (b) Closer view at the center of the same mesh. 
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Figure 2. Sketch of the Poiseuille flow of a solid-liquid mixture. 

In the procedure, the size of the time step At, +t is determined by the maximum distance each 
particle is allowed to travel, or the maximum change in the particle speed. The explicit update step 
(2) is first-order accurate in time, which can be easily improved to second order by introducing 
accelerations of the solid particles and the mesh nodes. In the flow solver, the systems of algebraic 
equations [15] and [16] need to be solved iteratively. The non-linear system [15] is handled with 
a modified-Newton method, and treated as the outer iteration loop. The corresponding linearized 
algebraic system is solved with an iterative solver using a preconditioned generalized minimal 
residual (GMRES) procedure introduced by Saad & Schultz (1986). GMRES is a popular method 
for non-symmetric systems stemming from Navier-Stokes equations. In the GMRES procedure, 
the full system is projected onto a much smaller Krylov subspace, and the residual of the system 
is minimized on that subspace. To improve convergence of the iterations, the size of the Krylov 
space is set at 20 in this study. We also implemented a preconditioner using incomplete LU 
factorization with controlled threshold fill-in elements (ILUT). The number of fill-ins is controlled 
to be less than 10 for both the upper and lower triangular matrices. The implemented flow solver 
is quite robust and efficient. 

6. RESULTS AND DISCUSSIONS 

The program is tested against the numerical results computed using the code developed by Hu 
et al. (1992). For a sedimenting cylinder along the centerline of a channel, the computed terminal 
speed of the cylinder agrees with previously published numerical and theoretical results. The 
simulation of five sedimenting cylinders qualitatively reproduces drifting-kissing-tumbling. 

In this paper, we present numerical results for Poiseuille flows of solid-liquid mixtures in a 
vertical channel. The flow geometry is sketched in figure 2. The solid particles are slightly heavier 
than the liquid. The gravity is directed along the channel walls and pointing in the positive 
x-direction. The pressure gradient is applied against the gravity and drives the flow. The width of 
the channel is W, and the periodic length of the computational cell is L. The particles in the fluid 
are circular and of uniform size with diameter d. The number of the particles, N, in the 
computational cell is specified and keeps fixed during the simulation. 
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The non-dimensional  parameters  governing the flow problem described above can be character-  
ized as: 

the relative channel width and length: W/d,  L /d ,  [17] 

N ~ d  2 
_ , [ 1 8 ]  the solid fraction 4) 4 L W  

the density ratio Ps/Pr, [19] 

the particle Reynolds  number  Re = Pr Vd/#f ,  [20] 

- d  ( d p  ) 
the driving pressure gradient dp -- p - ~  \d-xx - Pfg [21] 

0.8 

0 , 6 - -  

U 

0 . 4 -  

l - (sol id  line) normal mesh (h) 
0.2 - + refined mesh h/2 

0 ] ~ ~ ~ ~  ~ l ~  ~ i i i i : - i i ~ : : i i l ] i : ' i ? : i l l  

_ 0 . 2 1  , ~ ~ ~ I , , ~ , I ~ t ~ i I ~ , , , I , , , , I , , , , I , , , , I , , , , 
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0 . 8  

0 . 6 - -  

U 

0 . 4 -  

t I -  (solid line)time step At 

0.2 - tl V [ + reduced time step At/2 

I III 

0 ~ 

-0.2 , , , , I , , L , I , , , ~ I J , ~ I ~ , , I , , , ~ I , , J t I , , , ,  

0 10 20 30 40 50 60 70 80 
t* 

Figure 3. Convergence test with two particles (N = 2) at W/d = 6, L/d = 8, p~/pr= 1.1, Re = 9.44 and 
d# = 0.028. The figures show the transients of the translational velocities U and V, and the angular velocity 

f~ of one of the cylinders. The dimensionless time t* is defined as tV/d. 



344 ~. H. HU 

where  V is the veloci ty scale for  the flow, for  example ,  to measure  the difference in velocity between 
the solid par t ic les  and  the fluid one can choose  V = x/(1 - p f /ps )gd .  In defining the dr iv ing pressure 
grad ien t  the stat ic c o m p o n e n t  is deduc ted  and  only the dynamic  par t  is used. The so l id - l iqu id  
mixture  has  a compos i t e  densi ty  

Pc = Pf Jr (Ps - pf)~b. [22] 

To drive the mix ture  u p w a r d  th rough  the channel ,  the magni tude  o f  the appl ied  pressure grad ien t  
has to be greater  than  Peg which co r re sponds  to a neutra l  non-d imens iona l  pressure grad ien t  
dff,, = ( P s -  Pr )g (ad /prV  2. In the s imula t ion  we con t ro l  dp  such tha t  the flow could  be upward  
d/~ > d/0, (pressure  dr iven)  or  d o w n w a r d  d/~ < dp ,  (gravity driven).  

1 . 5  - -  

1 - 

0 . 5  - -  

0 

-0.5 - 

-1 ' 

0 

1 . 5  - -  

1 m 

0.5 

0 - 

-0.5 - 

-1 
0 

I 

(a) - (solid line) normal mesh (h) J 
i + refined mesh h/2 I 

U ÷ 

, ,  , I , , , ,  I , , ,  , I , , , ,  I ,  t , ,  I , , , ,  

5 10 15 20 25 30 

t* 

(b) - (solid line) time step At 

U f * ~ l  + reduced time step At/2 I 

5 10 15 20 25 30 

t* 

Figure 4. Convergence test with two particles (N = 2) at WId = 6, L/d = 8, ps/pf = 1.1, Re = 94.4 and 
d~ = 0.028. The figures show the transients of the translational velocities U and V, and the angular velocity 

f~ of one of the cylinders. 
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The mesh size and time step to be used in the computation are determined by convergence tests. 
Two particles are used in the tests. The normal mesh size and time step are determined by the 
number of minimum segments (= 15) on the particle surface, and by the maximum distance 
(= 0.4d) each particle is allowed to travel, respectively. The mesh size and the time step are then 
reduced by half, the results are shown in figures 3 and 4 for particle Reynolds numbers of 9.44 
and 94.4. For small Reynolds numbers, no noticeable differences were detected when a finer mesh 
or smaller time steps were used. For Re = 94.4, the mesh size and the time step used is still adequate. 
Only small differences wre detected at longer times. We think that those differences will not change 
the statistic information of the flow when a large umber of particles are involved. 
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Figure  5. Down- f low wi th  W/d = 1 I, L/d = 22, ~ = 0.325, Ps/Pr = 1.1, Re  = 9.44, and  d/~ = 0.336. The  
figures show the snap  shots  o f  the f low field a t  four  t ime  ins tan ts  (a) t*  = 0, (b) t* = 31.2, (c) t* = 54.8 

and  (d) t* = 98.0, where  t*  is the d imens ion less  t ime. 
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(a) (b) 

Figure 6. Upflow with W/d = 11, L/d = 22, ~b = 0.325, Ps/Pf = 1.1, Re = 9.44 and dfi = 0.449. The figures 
show the snap shots of the flow field at two time instants, (a) t* = 24.7 and (b) t* = 44.0. 

In the first simulation, the non-dimensional parameters  are W/d  = 11, L / d  = 22, ~b = 0.325 
( N  ---- 100), Ps/Pf-- 1.1, Re = 9.44 and dp = 0.336 (dff, = 0.358). Particles in this flow are nearly 
neutrally suspended, since the applied pressure gradient almost balances the gravity. Figure 5 shows 
the flow field at four time instants. The white lines in the figure are stream lines. Initially the 
particles distribute randomly in the fluid as shown in figure 5(a). The particles are normally well 
separated from each other and from the channel walls. During the initial transient [figure 5(b)], 
the particles fall and the bulk of  the fluid flows downward. During the sedimentation of  the 
particles, long particle chains are formed along the streamlines, and they tumble due to the unstable 
nature of  long bodies in Newtonian fluids. The particle-particle interaction can draw particles 
together and momentari ly form particle clusters. As the flow field develops, the solid-fluid mixture 
at the middle of  the channel starts to flow upwards, and circulation within the channel occurs, as 
indicated in figure 5(c). Eventually, an upflow stream is formed near the center of  the channel, as 
shown in figure 5(d). The fluid and the particles near the walls flow slowly downward. Under  this 
flow condition, particles tend to align along the walls, and stay there. 

For  the second simulation, we increase the applied pressure gradient dfi = 0.449 above the value 
for neutral suspension, and keep the other non-dimensional parameters the same. In this flow, the 
solid-liquid mixture flows upward. Figure 6 shows the flow field at two time instants. The initial 
distribution of  the particles are the same as the previous simulation. After the initial transient, the 
mixture flows upward. The velocity profile in the channel is almost uniform, as evidenced by the 
even spacing of  the iso-streamlines in figure 4(a) and (b). The most  interesting feature for this 
flow is that the particles migrate away from the wall region and there is a clear liquid layer next 
to the channel walls where most  of  the shear occurs. This clear liquid layer forms a lubrication 
layer which facilitates the flow. The thickness of  this lubrication layer is of  the order of  particle 
diameter. In this flow, the particles follow the fluid and do not interact as strongly as the previous 
case. 

Next we examine the effect of  the particle Reynolds number  on the flow pattern. We increase 
the Reynolds number  by a factor of  10 and keep the other parameters fixed. In the first case, the 
mixture flows downward. The non-dimensional parameters  are W/d  = 11, L / d  = 22, ~b = 0.325, 
Ps/Pf = 1.1, Re = 94.4 and dfi = 0.336. The results are displayed in figure 7. The initial condition 
of the flow is the same as in figure 5(a). As the Reynolds number  is increased, the particles interact 
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more strongly, and more structures (particle clusters and cross-stream arrays) are formed in the 
flow. Those particle clusters frequently break and reform. In this flow, there are no lubricating 
layers next the channel walls, instead the particles become close to each other (and may collide) 
and toward the channel walls, tend to stick to the walls. In the current version of  the program, 
the collision process is not modeled, it is captured as far as the program can handle. If  the size 
of  the gap between the particles or the particle and the wall is less than 10 -5 times the particle 
diameter, the simulation has to stop. 

For the upward flow with the same high Reynolds number, the results are shown in figure 8. 
The particles are again interacting much more strongly than the lower Reynolds number case 
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Figure  7. Down- f low wi th  W/d = 11, L/d = 22, ~ = 0.325, p,/pr = 1.1, Re = 94.4 and  dff = 0.336. The  
figures show the snap  shots  of  the f low field a t  four  t ime ins tants ,  (a) t*  = 5 . 2 9 ,  (b) t*  = 8 . 3 1 ,  

(e) t* = 10.9 and  (d) t* = 13.0. 
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Figure 8. Upflow with W/d = 11, L/d = 22, ~b = 0.325, Ps/Pf = 1.1, Re = 94.4 and d/~ = 0.449. The figures 
show the snap shots of the flow field at four time instants, (a) t* = 6.80, (b) t* = 11.3, (c) t* = 14.8 and 

(d) t* = 18.2. 

(figure 6). M a n y  c ross -s t ream a r rays  are  ev ident  in the figures. F o r  this flow, there is no  clear  l iquid 
layer  next  to  the channel  walls,  a l t hough  mos t  o f  the shear  occurs  at  the near  wall  region.  In  the  
bu lk  o f  the channel  the mix ture  flows u p w a r d  a lmos t  uni formly .  F o r  the flow at  h igh Reyno lds  
numbers ,  the par t ic les  do  get very close to each o the r  o r  t o w a r d  the channel  walls, and  the par t ic les  
m a y  coll ide.  

W e  next  reduce the par t ic le  concen t r a t i on  by  s imula t ing  the flow in a larger  channel .  The  
pa r ame te r s  for  the s imula t ion  are: W / d  = 16, L i d  = 32, ~ = 0.153, ps/pf= 1.1, Re = 94.4 and  
d/~ = 0.336. The  results  are  presented  in figure 9. In  this flow, the lubr ica t ion  layer  next  to  the 
channel  walls is very clear,  especial ly at  la ter  t imes. The  flow in the bu lk  o f  the channel  is aga in  
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uniform. The particles seem to cluster as they move  along the flow. The waves o f  the solid fraction 
could be diagnosed by doing averaging and statistical analysis, which will be the topic o f  our  next 
study. 

The simulated result on  the migrat ion o f  the particles in Poiseuille flow agrees and extends the 
results o f  Feng et al. (1994b) where the migrat ion o f  a single particle in Poiseuille flow was studied. 
The current  numerical  simulation also qualitatively agrees with experiment observat ions o f  spheres 
in circular tubes where it was found that  spheres more  dense than the fluid in an upflow (or spheres 
less dense in a downflow) migrate towards  the tube axis, while spheres less dense than the fluid 
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Figure 9. Upflow with W/d = 16, L/d = 32, ~b = 0.153, P s / P f  = 1.1, Re = 94.4 and d/i = 0.336. The figures 
show the snap shots of the flow field at four time instants, (a) t*= 0, (b) t* = 9.91, (c) t*= 23.5 and 

(d) t* = 34.0. 
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Figure 10. Four hundred particles flowing between a channel in two periodic cells. The solid~uid mixture 
flows upwards against gravity. The flow parameters are W/d = 16, L/d = 32, t h =0.306, ps/p~= 1.2, 
Re = 12.7 and d/~ = 0.379• The x component, u of the velocity is color coded on the elft and the y 

• component, v, is on the right. 

in an upflow (or spheres more  dense in a downflow) migrate towards  the tube wall [see, for 
example, Cox & Mason  (1971), Brenner (1966) and Karnis  et al. (1966)]. 

Finally, in figure 10 we demonst ra te  the capability o f  the code by presenting a snap shot of  the 
simulation o f  400 particles flowing between a channel in two periodic cells. In this simulation the 
total number  o f  elements is a round  30,000, the number  o f  nodes in the mesh is a round  60,000 and 
the total number  o f  unknowns  is about  170,000. The computa t ion  was performed on a four C P U  
C O N V E X  C240. It took  about  15 min to advance one time step, in a vector mode  using only one 
CPU.  In this simulation, 600 time steps were performed.  

7. C O  N C L U S I O N S  

We developed a numerical  procedure  based on an A L E  Galerkin finite element technique to 
simulate the mot ion  o f  a large number  o f  solid particles in a flowing liquid. Using this procedure,  
we study the Poiseuille flow o f  solid-l iquid mixtures in a vertical channel. The effects o f  the applied 
pressure gradient,  the particle Reynolds  number  and the fraction o f  the solid loading on the flow 
pat tern o f  the solid-l iquid mixture are studied. It  was found that  when the applied pressure gradient 
is large enough  to overcome the gravity (upflow), the particles migrate away f rom the channel walls 
and there is a clear liquid layer next to the walls which lubricates the flow. As the particle Reynolds  
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number is increased, particles interact more strongly and large clusters of particles are formed in 
the flow. 
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